A novel illumination-robust local descriptor based on sparse linear regression

نویسندگان

  • Zuodong Yang
  • Yong Wu
  • Wenteng Zhao
  • Yicong Zhou
  • Zongqing Lu
  • Weifeng Li
  • Qingmin Liao
چکیده

a r t i c l e i n f o a b s t r a c t Robust face recognition under uncontrolled illumination conditions is an important problem for real face recognition systems. In this paper, we introduce a novel illumination-robust local descriptor named Sparse Linear Regression Binary (SLRB) descriptor. The SLRB descriptor is a bit string by binarizing the sparse linear regression coefficients in a local block. It is an illumination-insensitive descriptor based on the locally linear consistency assumption under the Lambertian reflectance model. We use the cosine similarity and Hamming similarity as the similarity measure for the SLRB descriptor of two different images respectively. Experimental results on the Extended Yale-B and CMU-PIE face database show a promising performance compared to the existing representative approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

A novel Local feature descriptor using the Mercator projection for 3D object recognition

Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...

متن کامل

Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation

Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. I...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

3D Face Recognition Based on Local Shape Patterns and Sparse Representation Classifier

In recent years, 3D face recognition has been considered as a major solution to deal with these unsolved issues of reliable 2D face recognition, i.e. illumination and pose variations. This paper focuses on two critical aspects of 3D face recognition: facial feature description and classifier design. To address the former one, a novel local descriptor, namely Local Shape Patterns (LSP), is propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Digital Signal Processing

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2016